The sources marked with * were written or developed by members of the consortium.

  1. FAIR Digital Objects Forum.
  2. Udo Seifert. “From Stochastic Thermodynamics to Thermodynamic Inference.” In: Annual Review of Condensed Matter Physics 10.1 (2019), pp. 171–192. DOI: 10.1146/annurevconmatphys-031218-013554.
  3. Christopher Jarzynski. “Nonequilibrium Equality for Free Energy Differences.” In: Phys. Rev. Lett. 78 (14 1997), pp. 2690–2693. DOI: 10.1103/PhysRevLett.78.2690.
  4. Andrea Roli and Stuart A. Kauffman. “Emergence of Organisms.” In: Entropy 22.10 (2020). DOI: 10.3390/e22101163.
  5. *Georgy Astakhov et al. Quantum technologies in the Helmholtz association. URL: https://www.
  6. Philip W. Anderson. “More Is Different. Broken symmetry and the nature of the hierarchical structure of science.” In: Science 177.4047 (1972), pp. 393–396. DOI: 10.1126/science.177.4047.393.
  7. Erik P. Hoel. “When the Map Is Better Than the Territory.” In: Entropy 19.5 (2017). DOI: 10.3390/e19050188.
  8. George F. R. Ellis and Jonathan Kopel. “The Dynamical Emergence of Biology From Physics. Branching Causation via Biomolecules.” In: Frontiers in Physiology 9 (2019), p. 1966. DOI: 10.3389/fphys.2018.01966.
  9. Luciano Floridi. The Philosophy of Information. Oxford University Press, 2011. DOI: 10.1093/acprof:oso/9780199232383.001.0001.
  10. David Bawden and Lyn Robinson. “Still Minding the Gap? Reflecting on Transitions between Concepts of Information in Varied Domains.” In: Information 11.2 (2020). DOI: 10.3390/info11020071. 
  11. Artemy Kolchinsky and David H. Wolpert. “Semantic information, autonomous agency and non-equilibrium statistical physics.” In: Interface Focus 8.20180041 (2018). DOI: 10.1098/rsfs.2018.0041.
  12. Maurizio Spurio. Particles and Astrophysics. A multi-messenger approach. Springer, 2015. DOI: 10.1007/978-3-319-08051-2.
  13. Sean Bechhofer et al. “Why Linked Data is Not Enough for Scientists.” In: 2010 IEEE Sixth International Conference on e-Science. 2010, pp. 300–307. DOI: 10.1109/eScience.2010.21.
  14. Koenraad De Smedt, Dimitris Koureas, and Peter Wittenburg. An analysis of scientific practice towards FAIR digital objects. DOI: 10.23728/b2share.e14269d07ce84027a7f79ee06b994ef9.
  15. Koenraad De Smedt, Dimitris Koureas, and Peter Wittenburg. “FAIR Digital Objects for Science: From Data Pieces to Actionable Knowledge Units.” In: Publications 8.2 (2020). DOI: 10.3390/publications8020021.
  16. Brian Matthews. Core Scientific Metadata Model (CSMD). Version 4.0. Mar. 2013. URL:
  17. VAMDC consortium. URL:
  18. *Steffen Franke et al. “Plasma-MDS, a metadata schema for plasma science with examples from plasma technology.” In: Scientific Data 7.439 (1 2020). DOI: 10.1038/s41597-020-00771-0.
  19. *QPTDat. URL:
  20. *SFB 1316 Transient Atmospheric Pressure Plasmas: from plasmas to liquids to solids. URL:
  21. *Phys2BioMed. URL:
  22. *Metrology infrastructure for high-pressure gas and liquified hydrogen flows (MetHyInfra). URL:
  23. *European Metrology Programme for Innovation and Research (EMPIR). URL:
  24. *Benjamin Schäfer et al. “Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics.” In: Nature Energy 3.2 (2018), pp. 119–126. DOI: 10.1038/s41560-017-0058-z.
  25. *Malte Schröder et al. “Anomalous supply shortages from dynamic pricing in on-demand mobility.” In: Nature communications 11.1 (2020), pp. 1–8. DOI: 10.1038/s41467-020-18370-3.
  26. *Jose Casadiego et al. “Model-free inference of direct network interactions from nonlinear collective dynamics.” In: Nature Communications 8.1 (2017), pp. 1–10. DOI: 10.1038/s41467-017-02288-4.
  27. *Deep Dynamics Group. URL:
  28. Jingfang Fan et al. “Universal gap scaling in percolation.” In: Nature Physics 16.4 (2020), pp. 455–461. DOI: 10.1038/s41567-019-0783-2.
  29. Lukas Ramlow et al. “Partial synchronization in empirical brain networks as a model for unihemispheric sleep.” In: EPL (Europhysics Letters) 126.5 (2019), p. 50007. DOI: 10.1209/0295-5075/126/50007.
  30. Jens Christian Claussen. “Offdiagonal complexity. A computationally quick complexity measure for graphs and networks.” In: Physica A 375 (2007), pp. 365–373. DOI: 10.1016/j.physa.2006.08.067.
  31. *Stefan Luther et al. “Low-energy control of electrical turbulence in the heart.” In: Nature 475 (2011), pp. 235–239. DOI: 10.1038/nature10216.
  32. *Jan Christoph et al. “Electromechanical vortex filaments during cardiac fibrillation.” In: Nature 555 (2018), pp. 667–672. DOI: 10.1038/nature26001.
  33. *A Systems Approach to Chronic Inflammatory Disease (SysINFLAME). URL:
  34. Carlos Rojas and Steven Stephenson, eds. Myxomycetes. Biology, Systematics, Biogeography and Ecology. Academic Press, 2021. ISBN: 9780128242810.
  35. *Uwe Engel et al., eds. Handbook of Computational Social Science. Theory, Case Studies and Ethics. Vol. 1. Routledge, 2021. ISBN: 978-0-367-45652-8.
  36. *Uwe Engel et al., eds. Handbook of Computational Social Science. Data Science, Statistical Modelling, and Machine Learning Methods. Vol. 2. Routledge, 2021. ISBN: 978-1-03-207770-3.
  37. Maik Bierwirth et al. Leipzig-Berlin-Erklärung zu NFDI- Querschnittsthemen der Infrastrukturentwicklung. June 2020. DOI: 10.5281/zenodo.3895209.
  38. Barbara Ebert et al. NFDI Cross-cutting Topics Workshop Report. Mar. 2021. DOI: 10.5281/zenodo.4593770.
  39. Tanja Hörner. Data Train. Training in Research Data Management and Data Science. 2021. URL:
  40. RDA. Structure of Information. URL:
  41. Katherine McNeill, Reyna Jenkyns, and Brigitte Mathiak. RDA Data Granularity WG. URL:
  42. PhySH – Physics Subject Headings. URL:
  43. *Holger Israel, Esther Tobschall, and Frank Tristram. “Forschungsdaten FAIR verwalten.” In: Physik Journal 20.7 (2021), pp. 35–38. URL:
  44. *Holger Israel, Esther Tobschall, and Frank Tristram. Dataset for the publication “Umfrage zum Forschungsdatenmanagement in der Physik”. Ed. by PTB. June 2021. DOI: 10.7795/730.20210511.
  45. *Timm Fitschen et al. “CaosDB. Research Data Management for Complex, Changing, and Automated Research Workflows.” In: Data 4.2 (2019). DOI: 10.3390/data4020083.
  46. XML Schema for Atoms, Molecules, and Solids. URL:
  47. Molecular-scale biophysics research infrastructure (MOSBRI). URL:
  48. Alejandra Gonzalez-Beltran et al. MIACME 1.0. MIACME Specification. Version 1.0. Nov. 2021. URL:
  49. GoFAIR. FAIR Principles. URL:
  50. Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management and stewardship.” In: Scientific Data 3 (2016). DOI: 10.1038/sdata.2016.18.
  51. DataCite. DataCite Metadata Schema 4.4. Released 30 Mar 2021. URL: https://schema.
  52. Riccardo Albertoni et al., eds. Data Catalog Vocabulary (DCAT). Version Version 2. Feb. 2020. URL:
  53. Riccardo Albertoni et al., eds. Data Catalog Vocabulary (DCAT). Version Version 3. May 2021. URL:
  54. DCMI Metadata terms. Last accessed on September 21, 2021. 2020. URL:
  55. Sean Chen, Kate Anne Alderete, and Alex Ball. RDA Metadata Standards Directory. Metadata Physical Sciences & Mathematics. URL:
  56. Helmholtz Metadata Collaboration (HMC). RDA Metadata Standards Catalog. URL:
  57. The Data Quality Challenge. 2020. URL:
  58. ORCiD. URL:
  59. ROR. Welcome to the Research Organization Registry Community. URL:
  60. Internet Archive. PURL Administration. URL:
  61. W3C Permanent Identifier Community Group. Permanent Identifiers for the Web. URL:
  62. “Creating a metadata profile. A deliverable of the FAIRplus project (grant agreement 802750), funded by the IMI programme, a private-public partnership that receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA Companies.”In: The FAIR Cookbook. Ed. by FAIRplus. Chap. 9. URL:
  63. Nick Juty et al. “Unique, Persistent, Resolvable: Identifiers as the Foundation of FAIR.” In: Data Intelligence 2.1-2 (Jan. 2020), pp. 30–39. ISSN: 2641-435X. DOI: 10.1162/dint_a_00025. eprint:\_a\_00025.pdf.
  64. Juan Sequeda and Ora Lassila. “Designing and Building Enterprise Knowledge Graphs.” In: Synthesis Lectures on Data, Semantics, and Knowledge 11.1 (2021), pp. 1–165. DOI:10.2200/S01105ED1V01Y202105DSK020.
  65. Yann Le Franc et al. D2.2 FAIR Semantics: First recommendations. Version 1.0 DRAFT. Mar. 2020. DOI: 10.5281/zenodo.3707985.
  66. *Christian P. Endres et al. “The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC.” In: J. Mol. Spectrosc. 327 (2016), 95–104. DOI: 10.1016/j.jms.2016.03.005.
  67. ALMA. URL:
  68. George Datseris et al. “DrWatson: the perfect sidekick for your scientific inquiries.” In: Journal of Open Source Software 5.54 (2020), p. 2673. DOI: 10.21105/joss.02673.
  69. The Jupyter notebook. URL:
  70. Guus Schreiber et al. RDF 1.1 Primer. 2014. URL:
  71. Dan Brickley, R.V. Guha, and Brian McBride. RDF Schema 1.1. 2014. URL:
  72. Pascal Hitzler et al. OWL 2 Web Ontology Language Primer (Second Edition). 2012. URL:
  73. Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Language. 2013. URL:
  74. Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 2004. URL:
  75. Dimitris Kontokostas Holger Knublauch. Shapes Constraint Language (SHACL). W3C Recommendation. 2017. URL:
  76. The OBO Foundry. URL:
  77. The OBO Foundry. Principles. Overview. URL:
  78. The OBO Foundry. Resources. URL:
  79. The OBO Foundry. Ontologies Table. URL:
  80. The OBO Foundry. Operations Committee. 2021. URL:
  81. Linked Open Terms Methodology. Industrial version. URL:
  82. María Poveda-Villalón, Alba Fernández-Izquierdo, and Raúl García-Castro. Linked Open Terms (LOT) Methodology. Version 1.0. Jan. 2019. DOI: 10.5281/zenodo.2539305.
  83. Linked Open Terms Methodolgy. LOT-Resources on GitHub. URL:
  84. *Metadata4Ing in NFDI4Ing. Competency Question Repository. URL: https://git.rwthaachen. de/nfdi4ing/metadata4ing/kompetenzfragen.
  85. *NFDI4Phys. NFDI4Phys GitHub Repository. URL:
  86. *NFDI4Phys. NFDI4Phys GitLab Repository at PTB. URL:
  87. Bureau International des Poids et Mésures. JCGM 200:2012. International vocabulary of metrology. URL:
  88. Daniel Hutzschenreuter et al. SmartCom Digital-SI (D-SI) XML exchange format for metrological data version 2.0.0. Version 2.0.0. July 2021. DOI: 10.5281/zenodo.4709001.
  89. Giacomo Lanza et al. “Implementierung der FAIR-Prinzipien im Forschungsdatenmanagement. Eine Terminologie-basierte Strategie für die inhaltliche Beschreibung numerischer Faktendatensätze.” In: E-Science-Tage 2019. Data to Knowledge. Ed. by Vincent Heuveline, Fabian Gebhart, and Nina Mohammadianbisheh. 2020, pp. 47–57. DOI: 10.11588/heibooks.598.c8416.
  90. German Research Foundation. Guidelines for Safeguarding Good Research Practice. Code of Conduct. Sept. 2019. DOI: 10.5281/zenodo.3923602.
  91. Guide to the expression of uncertainty in measurement. 2008. URL:
  92. Michael Grabe. Measurement uncertainties in science and technology. Springer International Publishing, 2014. DOI: 10.1007/978-3-319-04888-8.
  93. Siegfried Gustav Hackel et al. “The Digital Calibration Certificate.” In: PTB-Mitteilungen 127 (2017), pp. 75–81. DOI: 10.7795/310.20170403.
  94. Anette Ganske et al. ATMODAT Standard (v3.0). 2021. DOI: 10. 35095/WDCC/atmodat_standard_en_v3_0.
  95. Amandine Kaiser et al. AtMoDat Maturity Indicator. URL:
  96. Martyn Sené, Ian Gilmore, and Jan-Theodoor Janssen. “Metrology is key to reproducing results.” In: International Journal of Theoretical Physics 547 (2017), pp. 397–399. DOI: 10.1038/547397a.
  97. *Holger Israel et al. “The 400d Galaxy Cluster Survey weak lensing programme.” In: Astronomy & Astrophysics 564 (Apr. 2014), A129. DOI: 10.1051/0004-6361/201322870.
  98. Yang-Min Kim, Jean-Baptiste Poline, and Guillaume Dumas. “Experimenting with reproducibility: a case study of robustness in bioinformatics.” In: GigaScience 7.7 (June 2018). DOI: 10.1093/gigascience/giy077.
  99. Bhatt, Asti et al. “Reproducible Software Environment. A tool enabling computational reproducibility in geospace sciences and facilitating collaboration.” In: J. Space Weather Space Clim. 10 (2020), p. 12. DOI: 10.1051/swsc/2020011.
  100. Initiative FAIRes Datenblatt. URL:
  101. NFDI4Ing. Homepage of WG Metadata4Ing. URL:
  102. RDA. Persistent Identification of Instruments WG. URL: https://www.rd-
  103. RDA Persistent Identification of Instruments WG. Medadata Schema for the Persistent Identification of Scientific Instruments. URL:
  104. Science Europe. Guidance Document Presenting a Framework for Discipline-specific Research Data Management. Jan. 2018. DOI: 10.5281/zenodo.4925907.
  105. Richard P Feynman. “Simulating physics with computers.” In: International journal of theoretical physics 21.6/7 (1982), pp. 467–488.
  106. Mari Carmen Bañuls et al. “Simulating lattice gauge theories within quantum technologies.” In: The European Physical Journal D 74.8 (2020). DOI: 10.1140/epjd/e2020-100571-8.
  107. IBM’s roadmap for scaling quantum technology. URL:
  108. Vedran Dunjko and Hans J. Briegel. “Machine learning & artificial intelligence in the quantum domain. A review of recent progress.” In: Reports on Progress in Physics 81.7 (June 2018), p. 074001. DOI: 10.1088/1361-6633/aab406.
  109. Quantum Artificial Intelligence for the Automotive Industry. URL:
  110. CLAIRE – Confederation of Laboratories for Artificial Intelligence Research in Europe. URL:
  111. K. Schüller, H. Koch, and F. Rampelt. Data Literacy Charter. 2021. URL:
  112. Connie Clare. How to build a community of Data Champions. Six Steps to Success. Sept. 2019. URL:
  113. Katarzyna Biernacka et al. Train-the-Trainer Concept on Research Data Management. Zenodo, 2020. DOI: 10.5281/zenodo.4071471.
  114. *Zusammenkunft aller Physik-Fachschaften (ZaPF). Einbindung von Forschungsdatenmanagement in der Lehre. May 2021. DOI: 10.5281/zenodo.5519028.
  115. *Philipp Jaeger and Janice Bode. Redet über die Daten! Forschungsdatenmanagement und Hochschullehre in der Physik und darüber hinaus. May 2021. DOI: 10.5281/zenodo.5168524.
  116. *Zusammenkunft aller Physik-Fachschaften (ZaPF). FAIR und Open Data im physikalischen Praktikum. Nov. 2020. DOI: 10.5281/zenodo.5519037.